Towards a Service Oriented Engineering Education

Theodor Borangiu

University "Politehnica" of Bucharest Faculty of Automatic Control and Computer Science Dept. of Automation and Applied Informatics

theodor.borangiu@cimr.pub.ro

Agenda

- Towards Service-Oriented Science
- Towards Service-Oriented Education
- Social Context of Services Computing
- Services Computing Coverage and IT perspective
- Services Computing Aspects for business and IT services
- Service Science Knowledge Environment
- SS-KE Premises to co-create value [a systemic point of view]
- Value Co-Creation Semantic technology
- SS-KE
 - Service Science Library
 - Service Science Concept Library
 - A Conceptual View
- Service Science Ontology-based Data Integration
- SS Curricula Service Innovation Map, Master Program SEM

Towards Service-Oriented Science

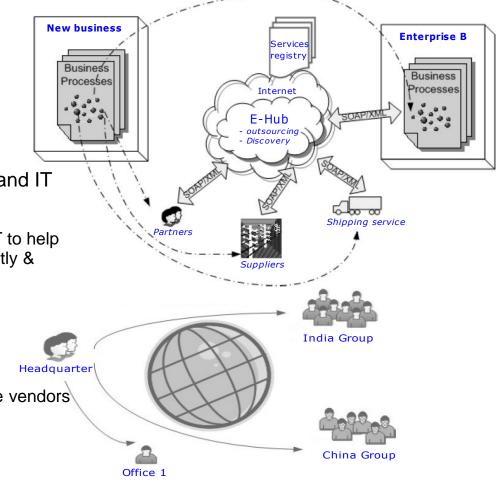
- Advances in Information Technology are changing the way in which data is turned into insight – by automating time-consuming activities
 - Service-Oriented Computing, i.e. technology that allows powerful information tools to be made available over the network – may contribute to that evolution
 - Service-Oriented Science ("e-Science") refers to scientific research enabled by distributed networks of interoperability services

- new information architectures
- new approaches to publishing and accessing valuable data and programs
- automated access by software programs, data integration from many sources and relationships identification
- service orientation of processes, resources, activities...

Towards Service-Oriented Education

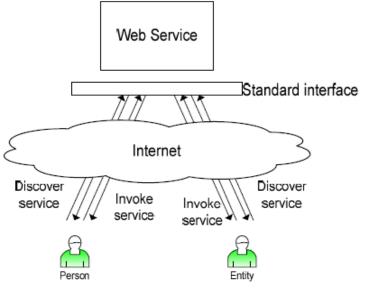
- New roles for campus information technology organizations
 - in addition to operating commodity services such as Internet and e-mail, these organizations can host functions and provide resources
 - various functions such as catalogs and ontologies, support a variety of collaborative research programs in different areas
 - all participants can obtain access to large quantities of distributed storage and computational power when they need it
 - e-Science:
 - increase individual and collective scientific productivity by making powerful information tools available to all
 - shared information documented in various databases and programs that represent - and automatically maintain and evolve - a collective knowledge base
 - scientific enterprise: new skills to build / use / host services
 - policies to govern access to services required

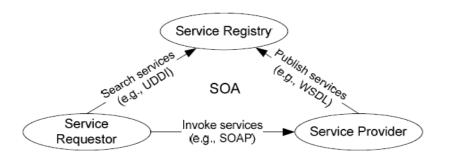
Social Context of Services Computing


- paradigm reorientation application development and enterprise IT infrastructure
 - SC the centrepiece of enterprise IT infrastructure that includes Web services, SOA, SaaS and application service providers (ASPs)

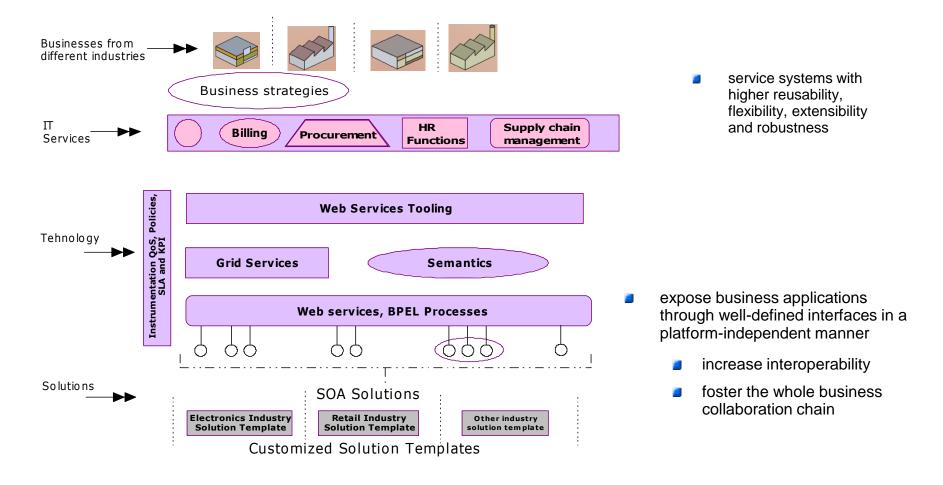
SC bridges the gap between business and IT

SC promises to benefit business


 A new cross discipline aims to enable IT to help perform business services more efficiently & effectively

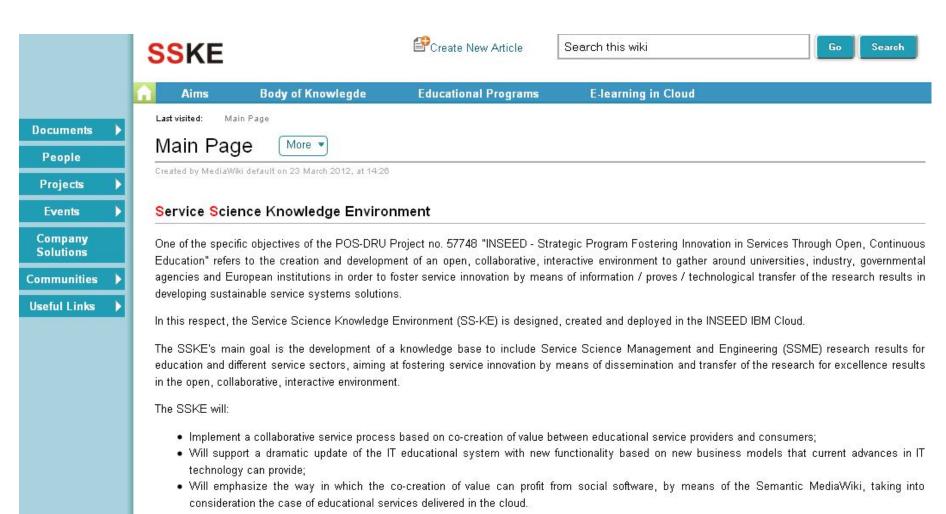

- Global standardization
 - Interactions between existing services
 - Small business go global
- Business initiatives
 - Support by major software infrastructure vendors (IBM, SAP, Microsoft, Sun, BEA)

What is Services Computing?

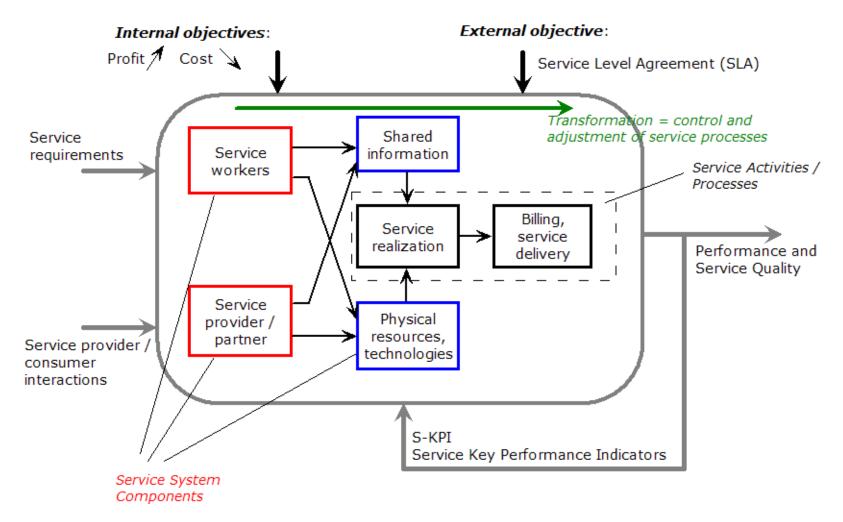

- SC covers the science and technology of leveraging computing and IT to model, create, operate, and manage business services.
 - web services best enabling technology
 - universal accessibility through standard communication protocols
 - Service Oriented Architecture (SOA) central architectural model
 - application framework facilitating services operations
 - standard support
 - SOAP, WSDL, UDDI

 techniques developed to facilitate information integration, enable business process automation, and increase the agility of enterprise information architectures

Services Computing – IT Perspective

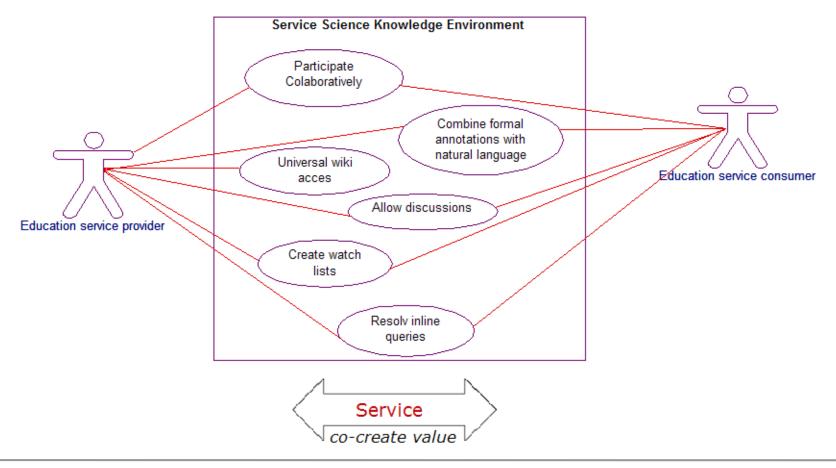


SC - aspects for business and IT services


- SC covers various aspects of business and IT services.
 - for business services:
 - service-oriented business consulting methodology and utilities;
 - business process modelling, transformation, integration;
 - business performance management;
 - industry solution patterns.
 - for IT services:
 - application integration services;
 - infrastructure services (e.g. utility business services, service-level automation and orchestration, resource virtualization services);
 - IT-level autonomous system management services.

Service Science Knowledge Environment

http://sske.cloud.upb.ro/wiki/


SS-KE – premises to co-create value

Education Service System = {Inputs, Outputs, Goals, Transformation, Components, Feedback}

Value Co-Creation - semantic technology

 approach knowledge-intensive processes and exploit the knowledge that is locked in the content

SS-KE – Service Science Library

Knowledge Path on Service Science

- Service Science defining the domain (ontology-based)
- Point of view on learning needs (*)
- Service Science Discipline Classification
- Service Science a global perspective (*)

Innovation Passport

- Characteristics of Service Innovation (**)
- Measuring Innovation (**): Innovation and productivity; Intellectual Property and services;
 Productivity and growth in services;
- R&D in Services roadmap for service innovation (**)
- European and World wide support to foster innovation
- Research priorities for the Science of Service (**)

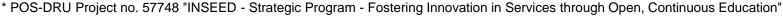
Solutions to improve service innovation

- Management focused (*)
- SOC focused (*)

^{*} POS-DRU Project no. 57748 "INSEED - Strategic Program - Fostering Innovation in Services through Open, Continuous Education"

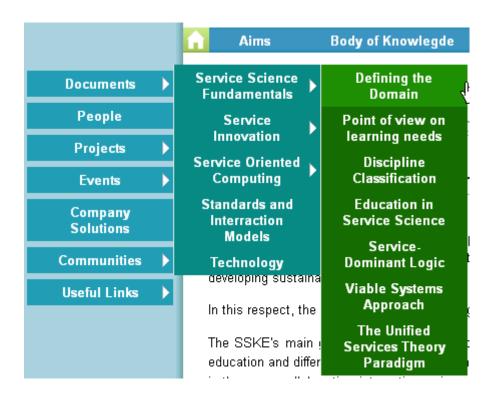
^{** 207/}CPII/2010 Project - Prospective Study in Service Science- "CRIS – Research Strategic Program for Growth and Innovation in Services

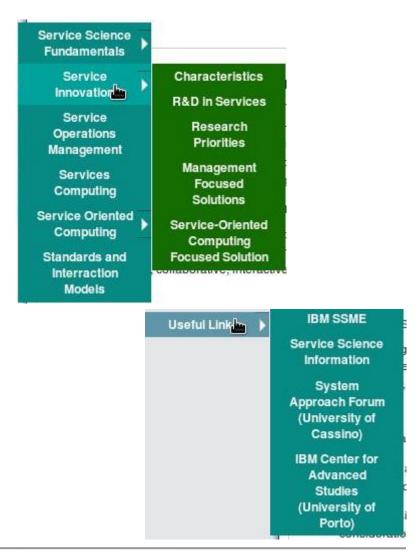
SS-KE - Service Science Concept Library


Foundations of Service Science

- Service Fundamentals
- Services Computing
- Service Oriented Computing and enabling technologies
- etc ...

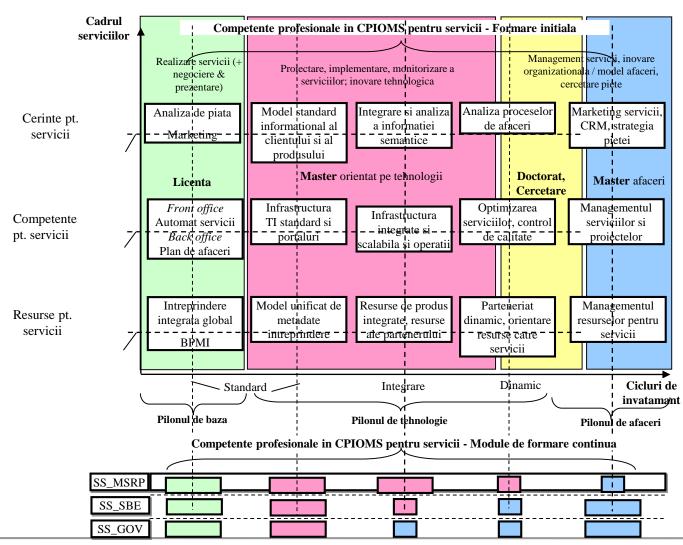
Research projects on services and service innovation


- Industry research
- Education (*)
- Service Sectors



^{** 207/}CPII/2010 Project - Prospective Study in Service Science- "CRIS – Research Strategic Program for Growth and Innovation in Services

SS-KE – a conceptual view



Service Science Ontology-based Data Integration

- SS-KE conceptual artifact:
 - a formal and computerized specification of constructs for Service Science to be used for supporting automated reasoning in the intelligent knowledge management system deployed in the INSEED IBM Cloud
- SS-KE: we use the ontology to effectively combine data or information from multiple heterogeneous sources
 - specifically, the Service Science ontology is intended to play the following roles:
 - content explication: it will enable accurate interpretation of data from multiple sources through the explicit definition of terms and relationships in the ontology
 - query model: the query is formulated using the ontology as a global query schema

SS curricula - Service Innovation Map

Master Program – Service Engineering and Management

Code	Discipline	Sem	C	s	L	P	ECTS	Evaluation (E/V/P)
UPB.03.M1.O.17-01	C11: Mathematical Modelling of Economic Processes	I	2		2		6	E
UPB.03.M1.O.17-02	C12: Data Mining and Data Warehousing	I	2		1		6	E
UPB.03.M1.O.17-03	C13: Architecture of Service Oriented Information Systems	I	2			2	6	E
UPB.03.M1.O.17-04	C14: Marketing and Financial Performance of Business	I	2		1		6	v
UPB.03.M1.O.17-05	C15: Network and Systems Security	I	2			2	6	E
	Total didactic activities: 18 hours		10		4	4	30	
	R&D Activities: 10 hours	I	10					
UPB.03.M1.O.17-06	C21: Business Process Modelling	П	2		2		6	E
UPB.03.M2.O.17-07	C22: Supply Chain Management and Logistics	п	2			2	6	E
UPB.03.M2.O.17-08	C23: Communication Management and Cognitive Psychology	п	2	1			6	v
UPB.03.M2.O.17-09	C24: Foundations of Service Science	п	2		2		6	E
UPB.03.M2.O.17-10	C25: Accounting and Financial Management for Services	п	2		1		6	E
	Total didactic activities: 18 hours		10	1	5	2	30	
	R&D Activities: 10 hours	п		10				
UPB.03.M3.O.17-11	C31: Enterprise Integration and Management Architectures	ш	2		2		6	E
UPB.03.M3.O.17-12	C32: Business Service Integration and Management	Ш	2			2	6	E
UPB.03.M3.O.17-13	C33: Knowledge Engineering and Services Ecosystem	ш	2		1		6	v
UPB.03.M3.O.17-14	C34: Service Operations and Customer Relationship Management	ш	2			2	6	E
UPB.03.M3.O.17-15	C35: Intellectual Property and Entrepreneurship	Ш	2		1		6	V
	Total didactic activities: 18 hours		10		4	4	30	
	R&D Activities: 10 hours	Ш		10				
	Total didactic activities: 0 hours	IV						
UPB.03.M4.O.17-16	Development of graduation project: 14 hours	IV		14			14	E
UPB.03.M4.O.17-17	R&D Activities: 16 hours	IV		16			16	V
Total activities	Total didactic activities: 54 hours x 14 weeks = 756 hours		30	1	13	10	90	
	Total R&D activities: 30 hours x 14 weeks = 420 hours				30		30	

Conclusions

- From System Science to Service Science
- Service Innovation a necessity in the global economy
- Service Science Curricula in Engineering education:
 - Lifecycle software development [IT support for complex, KIS systems]
 - From business management to service management [operation M&M]
 - Communication, team work, psychology
- Services Computing the framework for services design & implementing
- Service Innovation through R&D
- Service Science Knowledge Environment: bridge the gap between theory and practice
- The Service Ecosystem: 3 society tracks, 13 service sectors